Isolation and quantitation of topoisomerase complexes accumulated on Escherichia coli chromosomal DNA.

نویسندگان

  • Sandra Aedo
  • Yuk-Ching Tse-Dinh
چکیده

DNA topoisomerases are important targets in anticancer and antibacterial therapy because drugs can initiate cell death by stabilizing the transient covalent topoisomerase-DNA complex. In this study, we employed a method that uses CsCl density gradient centrifugation to separate unbound from DNA-bound GyrA/ParC in Escherichia coli cell lysates after quinolone treatment, allowing antibody detection and quantitation of the covalent complexes on slot blots. Using these procedures modified from the in vivo complexes of enzyme (ICE) bioassay, we found a correlation between gyrase-DNA complex formation and DNA replication inhibition at bacteriostatic (1× MIC) norfloxacin concentrations. Quantitation of the number of gyrase-DNA complexes per E. coli cell permitted an association between cell death and chromosomal gyrase-DNA complex accumulation at norfloxacin concentrations greater than 1× MIC. When comparing levels of gyrase-DNA complexes to topoisomerase IV-DNA complexes in the absence of drug, we observed that the gyrase-DNA complex level was higher (∼150-fold) than that of the topoisomerase IV-DNA complex. In addition, levels of gyrase and topoisomerase IV complexes reached a significant increase after 30 min of treatment at 1× and 1.7× MIC, respectively. These results are in agreement with gyrase being the primary target for quinolones in E. coli. We further validated the utility of this method for the study of topoisomerase-drug interactions in bacteria by showing the gyrase covalent complex reversibility after removal of the drug from the medium, and the resistant effect of the Ser83Leu gyrA mutation on accumulation of gyrase covalent complexes on chromosomal DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in Escherichia coli.

Proper geometric and topological organization of DNA is essential for all chromosomal processes. Two classes of proteins play major roles in organizing chromosomes: condensin complexes and type II topoisomerases. In Escherichia coli, MukB, a structural maintenance of chromosome-like component of the bacterial condensin, and topoisomerase IV (Topo IV), a type II topoisomerase that decatenates th...

متن کامل

Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli

Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...

متن کامل

Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli

Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...

متن کامل

The Escherichia coli supX locus is topA, the structural gene for DNA topoisomerase I.

Mutations in the supX locus, which result in the absence of DNA topoisomerase I enzyme activity in both Salmonella typhimurium and Escherichia coli, are all selected as suppressors of the leu-500 promoter mutation in S. typhimurium. To determine whether the supX locus is the structural gene topA for the DNA topoisomerase I enzyme or is a positive-acting regulator/activator gene for a nearby top...

متن کامل

Management of E. coli sister chromatid cohesion in response to genotoxic stress

Aberrant DNA replication is a major source of the mutations and chromosomal rearrangements associated with pathological disorders. In bacteria, several different DNA lesions are repaired by homologous recombination, a process that involves sister chromatid pairing. Previous work in Escherichia coli has demonstrated that sister chromatid interactions (SCIs) mediated by topological links termed p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 56 11  شماره 

صفحات  -

تاریخ انتشار 2012